Mesoscopic Simulation of Rarefied Gas Flow in Porous Media
نویسندگان
چکیده
The accurate description of flow in nano-scale pores or channels is very important for the reliable design of materials and processes in the areas of MEMS, mesoporous media, and vacuum technologies. Use of classical flow equations fails in this regime since the continuum assumption is not valid. This is due to the fact that the mean free path is comparable to the characteristic dimensions of the system, and rarefaction effects dominate the process. Such a difficulty arises notably in the intermediate Knudsen number regime (Kn=0.1 to 10), commonly referred to as the “transition” flow regime. To remedy this, slip flow conditions have been adopted in the literature, following the simple first-order approach of the velocity near the walls given by Maxwell, and extended to higher-order treatments. Alternatively, direct deterministic or stochastic atomistic and mesoscopic techniques have been employed for the flow description, which solve the Boltzmann or the Burnett equations and use kinetic theory approaches pertinent to this flow regime. A description of recent advances in simulation techniques, namely, the “continuum” slip approaches, and some direct mesoscopic techniques are presented in this chapter. Illustrative simulation results of permeability and viscosity coefficients in mesoporous media using the DSMC and LB methods are also given, followed by comparisons with classical continuum formulations.
منابع مشابه
Lattice Gas Automata Simulation of Adsorption Process of Polymer in Porous Media
Lattice gas automata (LGA) model is developed to simulate polymer adsorption process by adding some collision rules. The simulation result of the model is matched with batch experiment and compared with accepted isothermal adsorption equations. They show that the model is viable to perform simulation of the polymer adsorption process. The LGA model is then applied for simulating continuous poly...
متن کاملHeat Transfer Characteristics of Porous Radiant Burners Using Discrete-Ordinate Method (S2-Approximation)
This paper describes a theoretical study to investigate the heat transfer characteristics of porous radiant burners. A one dimensional model is used to solve the governing equations for porous medium and gas flow before the premixed flame to the exhaust gas. Combustion in the porous medium is modeled as a spatially dependent heat generation zone. The homogeneous porous media, in addition to its...
متن کاملImpact of Internal Structure on Foam Stability in Model Porous Media
Application of foam in EOR, increases macroscopic sweep efficiency via awesome increscent of mobility control. Macroscopic manifestation of foam application performance in porous media is complex process that involves several interacting microscopic foam events. Stability as an important factor in foam injection within large reservoirs, depends on several variables including oil saturation, con...
متن کاملSlip flow in porous micro-tubes under local thermal non-equilibrium conditions
In the present work, forced convection heat transfer of slip flow in porous micro-tubes with local thermal non-equilibrium between the gas and the solid matrix is investigated numerically. For this purpose, the flow is considered hydrodynamically developed but thermally developing. The Darcy-Brinkman-Forchheimer model in conjunction with separate energy equations for the gas and the solid matri...
متن کاملGas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability
This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...
متن کامل